Kamis, 02 Juni 2011

MEDAN MAGNET

Benda yang dapat menarik besi disebut MAGNET.
Macam-macam bentuk magnet, antara lain :
magnet batang magnet ladam magnet jarum
clip_image001
Magnet dapat diperoleh dengan cara buatan.
Jika baja di gosok dengan sebuah magnet, dan cara menggosoknya dalam arah yang tetap, maka baja itu akan menjadi magnet.
clip_image002
Baja atau besi dapat pula dimagneti oleh arus listrik.
Baja atau besi itu dimasukkan ke dalam kumparan kawat, kemudian ke dalam kumparan kawat dialiri arus listrik yang searah. Ujung-ujung sebuah magnet disebut Kutub Magnet. Garis yang menghubungkan kutub-kutub magnet disebut sumbu magnet dan garis tegak lurus sumbu magnet serta membagi dua sebuah magnet disebut garis sumbu.
clip_image003
Sebuah magnet batang digantung pada titik beratnya. Sesudah keadaan setimbang tercapai, ternyata kutub-kutub batang magnet itu menghadap ke Utara dan Selatan.
Kutub magnet yang menghadap ke utara di sebut kutub Utara.
Kutub magnet yang menghadap ke Selatan disebut kutub Selatan.
Hal serupa dapat kita jumpai pada magnet jarum yang dapat berputar pada sumbu tegak ( jarum deklinasi ).
Kutub Utara jarum magnet deklinasi yang seimbang didekati kutub Utara magnet batang, ternyata kutub Utara magnet jarum bertolak. Bila yang didekatkan adalah kutub selatan magnet batang, kutub utara magnet jarum tertarik.
clip_image004
Kesimpulan : Kutub-kutub yang sejenis tolak-menolak dan kutub-kutub yang tidak sejenis tarik-menarik
Jika kita gantungkan beberapa paku pada ujung-ujung sebuah magnet batang ternyata jumlah paku yang dapat melekat di kedua kutub magnet sama banyak. Makin ke tengah, makin berkurang jumlah paku yang dapat melekat.
Kesimpulan : Kekuatan kutub sebuah magnet sama besarnya semakin ke tengah kekuatannya makin berkurang.

HUKUM COULOMB.
Definisi : Besarnya gaya tolak-menolak atau gaya tarik menarik antara kutub-kutub magnet, sebanding dengan kuat kutubnya masing-masing dan berbanding terbalik dengan kwadrat jaraknya.
clip_image005
clip_image007
F = gaya tarik menarik/gaya tolak menolak dalam newton.
R = jarak dalam meter.
m1 dan m2 kuat kutub magnet dalam Ampere-meter.clip_image009
clip_image0110 = permeabilitas hampa.
Nilai clip_image013= 107 Weber/A.m
Nilai permeabilitas benda-benda, ternyata tidak sama dengan permeabilitas hampa.
Perbandingan antara permeabilitas suatu zat debgan permeabilitas hampa disebut permeabilitas relatif zat itu.
mrclip_image015
clip_image011[1]r = Permeabilitas relatif suatu zat.
clip_image011[2] = permeabilitas zat itu
clip_image011[3]0 = permeabilitas hampa.
PENGERTIAN MEDAN MAGNET.
Medan magnet adalah ruangan di sekitar kutub magnet, yang gaya tarik/tolaknya masih dirasakan oleh magnet lain.
Kuat Medan ( H ) = ITENSITY.
Kuat medan magnet di suatu titik di dalam medan magnet ialah besar gaya pada suatu satuan kuat kutub di titik itu di dalam medan magnet m adalah kuat kutub yang menimbulkan medan magnet dalam Ampere-meter. R jarak dari kutub magnet sampai titik yang bersangkutan dalam meter. dan H = kuat medan titik itu dalam : clip_image017 atau dalam clip_image019
Garis Gaya.
Garis gaya adalah : Lintasan kutub Utara dalam medan magnet atau garis yang bentuknya demikian hingga kuat medan di tiap titik dinyatakan oleh garis singgungnya.
Sejalan dengan faham ini, garis-garis gaya keluar dari kutub-kutub dan masuk ke dalam kutub Selatan. Untuk membuat pola garis-garis gaya dapat dengan jalan menaburkan serbuk besi disekitar sebuah magnet.
Gambar pola garis-garis gaya.
clip_image020
Rapat Garis-Garis Gaya ( FLUX DENSITY ) = B
Definisi : Jumlah garis gaya tiap satuan luas yang tegak lurus kuat medan.
clip_image022
Kuat medan magnet di suatu titik sebanding dengan rapat garis-garis gaya dan berbanding terbalik dengan permeabilitasnya.
clip_image024
clip_image026
B = rapat garis-garis gaya.
clip_image011[4] = Permeabilitas zat itu.
H = Kuat medan magnet.
catatan : rapat garis-garis gaya menyatakan kebesaran induksi magnetik.
Medan magnet yang rapat garis-garis gayanya sama disebut : medan magnet serba sama ( homogen )
clip_image028
Bila rapat garis-garis gaya dalam medan yang serba sama B, maka banyaknya garis-garis gaya ( clip_image030clip_image009[1] ) yang menembus bidang seluar A m2 dan mengapit sudut clip_image032 dengan kuat medan adalah : clip_image030[1] = B.A Sinclip_image032[1] Satuanya : Weber.
Diamagnetik Dan Para Magnetik.
Sehubungan dengan sifat-sifat kemagnetan benda dibedakan atas Diamagnetik dan Para magnetik.
Benda magnetik : bila ditempatkan dalam medan magnet yang tidak homogen, ujung-ujung benda itu mengalami gaya tolak sehingga benda akan mengambil posisi yang tegak lurus pada kuat medan. Benda-benda yang demikian mempunyai nilai permeabilitas relatif lebih kecil dari satu. Contoh : Bismuth, tembaga, emas, antimon, kaca flinta.
Benda paramagnetik : bila ditempatkan dalam medan magnet yang tidak homogen, akan mengambil posisi sejajar dengan arah kuat medan. Benda-benda yang demikian mempunyai permeabilitas relatif lebih besar dari pada satu. Contoh : Aluminium, platina, oksigen, sulfat tembaga dan banyak lagi garam-garam logam adalah zat paramagnetik.
Benda feromagnetik : Benda-benda yang mempunyai effek magnet yang sangat besar, sangat kuat ditarik oleh magnet dan mempunyai permeabilitas relatif sampai beberapa ribu. Contoh : Besi, baja, nikel, cobalt dan campuran logam tertentu ( almico )
LATIHAN SOAL.
1. Dua kutub magnet sejenis kekuatannya 10-3 A.m
a. Beberapa gaya tolak menolaknya jika jaraknya 25 cm.
b. Berapa jarak antara kutub-kutub itu bila gaya tolak-menolaknya 10 N.
2. Sebuah kutub magnet mempunyai kekuatan 10-5 A.m
a. Berapa kuat medan di satu titik yang jaraknya 1 m.
b. Berapa induksi magnetik di tempat itu ?
c. Berapa kuat medan dan induksi magnetik pada jarak 0,25 m.
3. Kuat medan di titik dalam medan magnet 5 N/A.m
a. Berapa besar gaya yang bekerja pada magnet yang kekuatannya 10 A.m dititik itu ?
b. Berapa besar induksi magnetik di tempat itu ?
4. Berapa flux magnetik kutub magnet yang kekuatannya 10-2
5. Medan magnet yang serba sama mempunyai kuat medan sebesar 107 N/A.m
a. Berapa induksi magnetiknya ?
b. Berapa flux magnetik yang tegak lurus bidang seluas 2 m2
c. Jika bidang itu mengapit sudut 300 dengan medan magnet. Berapa flux magnetik yang menembus bidang itu ?
MEDAN MAGNET DI SEKITAR ARUS LISTRIK.
Percobaan OERSTED
Di atas jarum kompas yang seimbang dibentangkan seutas kawat, sehingga kawat itu sejajar dengan jarum kompas. jika kedalam kaewat dialiri arus listrik, ternyata jarum kompas berkisar dari keseimbangannya.
Kesimpulan : Disekitar arus listrik ada medan magnet.
clip_image033
Cara menentukan arah perkisaran jarum.
a. Bila arus listrik yang berada anatara telapak tangan kanan dan jarum magnet mengalir dengan arah dari pergelangan tangan menuju ujung-ujung jari, kutub utara jarum berkisar ke arah ibu jari.
b. Bila arus listrik arahnya dari pergelangan tangan kanan menuju ibu jari, arah melingkarnya jari tangan menyatakan perkisaran kutub Utara.
Pola garis-garis gaya di sekitar arus lurus.
Pada sebidang karton datar ditembuskan sepotong kawat tegak lurus, di atas karbon ditaburkan serbuk besi menempatkan diri berupa lingkaran-lingkaran yang titik pusatnya pada titik tembus kawat.
clip_image034
Kesimpulan : Garis-garis gaya di sekitar arus lurus berupa lingkaran-lingkaran yang berpusatkan pada arus tersebut.
Cara menentukan arah medan magnet
Bila arah dari pergelangan tangan menuju ibu jari, arah melingkar jari tangan menyatakan arah medan magnet.
HUKUM BIOT SAVART.
Definisi : Besar induksi magnetik di satu titik di sekitar elemen arus, sebanding dengan panjang elemen arus, besar kuat arus, sinus sudut yang diapit arah arus dengan jaraknya sampai titik tersebut dan berbanding terbalik dengan kwadrat jaraknya.
clip_image036B = k . clip_image038
clip_image039 k adalah tetapan, di dalam sistem Internasional
k = clip_image041 = 10-7 clip_image043
Vektor B tegak lurus pada l dan r, arahnya dapat ditentukan denagan tangan kanan. Jika l sangat kecil, dapat diganti dengan dl.
dB = clip_image041[1] clip_image038[1]
Persamaan ini disebut hukum Ampere.
INDUKSI MAGNETIK
Induksi magnetik di sekitar arus lurus.
clip_image046
Besar induksi magnetik di titik A yang jaraknya a dari kawat sebanding dengan kuat arus dalam kawat dan berbanding terbalik dengan jarak titik ke kawat.
B = clip_image048 . clip_image050
B dalam W/m2
I dalam Ampere
a dalam meter
Kuat medan dititik H = clip_image052 = clip_image054 = clip_image056
mr udara = 1
clip_image057
Jika kawat tidak panjang maka harus digunakan Rumus : clip_image059
Induksi Induksi magnetik di pusat arus lingkaran.
clip_image060
Titik A berjarak x dari pusat kawat melingkar besarnya induksi magnetik di A dirumuskan :
Jika kawat itu terdiri atas N lilitan maka :
B = clip_image048[1] . clip_image062 atau B = clip_image048[2] . clip_image064
Induksi magnetik di pusat lingkaran.
Dalam hal ini r = a dan a = 900
Besar induksi magnetik di pusat lingkaran.
B = clip_image048[3] . clip_image066
B dalam W/m2.
I dalam ampere.
N jumlah lilitan.
a jari-jari lilitan dalam meter.
Arah medan magnetik dapat ditentukan dengan aturan tangan kanan.
clip_image067
Jika arah arus sesuai dengan arah melingkar jari tangan kanan arah ibu jari menyatakan arah medan magnet.
Solenoide
Solenoide adalah gulungan kawat yang di gulung seperti spiral.
Bila kedalam solenoide dialirkan arus listrik, di dalam selenoide terjadi medan magnet dapat ditentukan dengan tangan.
Gambar :
clip_image068
Besar induksi magnetik dalam solenoide.
clip_image069
Jari-jari penampang solenoide a, banyaknya lilitan N dan panjang solenoide 1. Banyaknya lilitan pada dx adalah : clip_image071 atau n dx, n banyaknya lilitan tiap satuan panjang di titik P.
Bila 1 sangat besar dibandingkan dengan a, dan p berada di tengah-tengah maka a1= 0 0 dan a2 = 180 0
Induksi magnetik di tengah-tengah solenoide :
clip_image073
clip_image075
Bila p tepat di ujung-ujung solenoide a1= 0 0 dan a2 = 90 0
clip_image077
clip_image079
Toroida
Sebuah solenoide yanfg dilengkungkan sehingga sumbunya membentuk lingkaran di sebut Toroida.
Bila keliling sumbu toroida 1 dan lilitannya berdekatan, maka induksi magnetik pada sumbu toroida.
clip_image081
n dapat diganti dengan clip_image083
N banyaknya lilitan dan R jari-jari toroida.
LATIHAN SOAL.
1. Pada jarak 1 cm dari kawat lurus yang panjang terdapat titik A. Di dalam kawat mengalir arus listrik sebesar 10 Ampere.
a. Berapa besar induksi magnetik di titik A.
b. Berapa besar gaya yang bekerja pada kutub magnet yang berkekuatan 6,28 Am di
titik A.
2. Di atas jarum Kompas yang seimbang di bentangkan kawat lurus yang panjang, sehingga kawat itu sejajar dengan jarum kompas. Jarak antara jarum kompas dengan kawat adalah 5 cm. Kedalam kawat dialirkan arus listrik sebesar 4,5 A. Berapa besar induksi magnetik pada jarak 5 cm dari kawat.
3. Dua kawat 1 dan m yang sejajar berada pada jarak 4 cm satu sama lain. di dalam kawat 1 mengalir arus listrik 15 A dan dalam, kawat m sebesar 10 A. Tentukan besar induksi magnetik di tengah-tengah antara 1 dan m.
a. Jika arusnya searah.
b. Jika arusnya berlawanan arah.
4. Besar induksi magnetik di pusat arus yang berbentuk lingkaran 2.10-6 W/m2 jari-jari lingkaran 15,7 cm. = 3,14
a. Berapa besar kuat arus
b. Berapa gaya yang dialami kuat medan magnet yang kekuatannya 3,14.10-2 di titik
pusatnya.
5. Sebuah gulungan kawat yang tipis terdiri atas 100 lilitan jari-jarinya 10 cm. Kedalam kawat dialirkan arus listrik sebesar 5 Ampere. Berapa besar induksi magnetik di titik pusatnya ?
6. Sebuah gulungan kawat tipis terdiri atas 100 lilitan berjari-jari 3 cm. Didalam gulungan kawat mengalir arus listrik sebesar 0,5 A.
a. Berapa besar induksi magnetik disatu titik yang berada pada garis tegak lurus
lingkaran yang melalui pusatnya dengan jarak 4 cm.
b. Berapa besar gaya pada kuat kutub yang berkekuatan 2.10-4 Am.
7. Kawat yang berbentuk lingkaran berjari-jari 15 cm, dialiri arus listrik sebesar 10 A.
a. Berapa induksi magnetik dipusat lingkaran ?
b. Berapa induksi magnetik di suatu titik pada garis sumbu 20 cm dari pusat
lingkaran.
8. Sebuah solenoida panjangnya 25 cm mempunyai 500 gulungan dialiri arus listrik 5 A.
a. Berapa induksi magnetik ditengah-tengah solenoide.
b. Berapa induksi magnetik pada ujung-ujung solenoida.
c. Berapa induksi magnetik jika intinya besi = 5500
d. Berapa flux magnetik pada soal a, b dan c jika penampang solenoida 25 cm2.
9. Sebuah solenoida mempunyai 1250 lilitan, panjangnya 98 cm dan jari-jari penampangnya 2 cm. Bila kedalam solenoida dialirkan arus 1,4 Ampere.
a. Berapa kuat medan magnet ditengah-tengah solenoida dan di ujung-ujungnya ?
b. Berapa flux magnetik pada ujung-ujung solenoide.
10. Sebuah toroida mempunyai 3000 lilitan. Diameter luar dan dalam masing-masing 26 cm dan 22 cm. Berapa induksi magnetik dalam toroida bila mengalir arus 5 A.
GAYA LORENTZ
Pada percobaan oersted telah dibuktikan pengaruh arus listrik terhadap kutub magnet, bagaimana pengaruh kutub magnet terhadap arus listrik akan dibuktikan dari percobaan berikut :
Seutas kawat PQ ditempatkan diantara kutub-kutub magnet ladam kedalam kawat dialirkan arus listrik ternyata kawat melengkung kekiri.
Gejala ini menunjukkan bahwa medan magnet mengerjakan gaya pada arus listrik, disebut Gaya Lorentz. Vektor gaya Lorentz tegak lurus pada I dan B. Arah gaya Lorentz dapat ditentukan dengan tangan kanan. Bila arah melingkar jari-jari tangan kanan sesuai dengan putaran dari I ke B, maka arah ibu jari menyatakan arah gaya Lorents.
gambar :
clip_image084
Besar Gaya Lorentz.
Hasil-hasil yang diperoleh dari percobaan menyatakan bahwa besar gaya Lorentz dapat dirumuskan sebagai :
F = B I clip_image086sin a
F = gaya Lorentz.
B = induksi magnetik medan magnet.
I = kuat arus.
clip_image086[1]= panjang kawat dalam medan magnet.
a = sudut yang diapit I dan B.
Satuan Kuat Arus.
Kedalam kawat P dan Q yang sejajar dialirkan arus listrik. Bila arah arus dalam kedua kawat sama, kawat itu saling menarik.
Penjelasannya sebagai berikut :
Dilihat dari atas arus listrik P menuju kita digambarkan sebagai arus listrik dalam kawat P menimbulkan medan magnet. Medan magnet ini mengerjakan gaya Lorentz pada arus Q arahnya seperti dinyatakan anak panah F. Dengan cara yang sama dapat dijelaskan gaya Lorentz yang bekerja pada arus listrik dalam kawat P.
clip_image087
Kesimpulan :
Arus listrik yang sejajar dan searah tarik-menarik dan yang berlawanan arah tolak- menolak.
Bila jarak kawat P dan Q adalah a, maka besar induksi magnetik arus P pada jarak a :
clip_image089
Besar gaya Lorentz pada arus dalam kawat Q
clip_image091
Besar gaya Lorentz tiap satuan panjang
clip_image093
clip_image095
clip_image097
F tiap satuan panjang dalam N/m.
Ip dan IQ dalam Ampere dan a dalam meter.
Bila kuat arus dikedua kawat sama besarnya, maka :
clip_image099
Untuk I = 1 Ampere dan a = 1 m maka F = 2.10-7 N/m
Kesimpulan :
1 Ampere adalah kuat arus dalam kawat sejajar yang jaraknya 1 meter dan menimbulkan gaya Lorentz sebesar 2.10-7 N tiap meter.
Gerak Partikel Bermuatan Dalam Medan Listrik.
Pertambahan energi kinetik.
clip_image100
Partikel A yang massanya m dan muatannya q berada dalam medan listrik serba sama, kuat medannya E arah vektor E kekanan. Pada partikel bekerja gaya sebasar F = qE, oleh sebab itu partikel memperoleh percepatan : clip_image102
Usaha yang dilakukan gaya medan listrik setelah partikel berpindah d adalah :
W = F . d = q . E .d
Usaha yang dilakukan gaya sama dengan perubahan energi kinetik
Ek = q . E .d
clip_image104
v1 kecepatan awal partikel dan v2 kecepatannya setelah menempuh medan listrik sejauh d.
Lintasan partikel jika v tegak lurus E.
clip_image105
Didalam medan listrik serba sama yang kuat medannya E, bergerak partikel bermuatan positif dengan kecepatan vx.
Dalam hal ini partikel mengalami dua gerakan sekaligus, yakni gerak lurus beraturan sepanjang sumbu x dan gerak lurus berubah beraturan sepanjang sumbu y.
Oleh sebab itu lintasannya berupa parabola. Setelah melintasi medan listrik, lintasannya menyimpang dari lintasannya semula.
clip_image107
clip_image109
Kecepatan pada saat meninggalkan medan listrik.
clip_image111
clip_image113
Arah kecepatan dengan bidang horisontal q :
clip_image115
Gerak Partikel Bermuatan Dalam Medan Magnet
Besar gaya Lorentz pada partikel.
clip_image116
Pada arus listrik yang berada dalam medan magnet bekerja gaya Lorentz.
F = B . I . clip_image086[2]sin a
Arus listrik adalah gerakan partikel-partikel yang kecepatannya tertentu, oleh sebab itu rumus di atas dapat diubah menjadi :
F = B . clip_image118. v . t sin a
F = B . q . v sin a
F adalah gaya Lorentz pada partikel yang muatannya q dan kecepatannya v, B besar induksi magnetik medan magnet, a sudut yang diapit vektor v dan B.
Lintasan partikel bermuatan dalam medan magnet.
clip_image119
Tanda x menyatakan titik tembus garis-garis gaya kemagnetan yang arah induksi magnetiknya ( B ) meninggalkan kita. Pada partikel yang kecepatannya v, bekerja gaya Lorentz.
F = B . q . v sin 900
F = B . q . v
Vektor F selalu tegak lurus pada v, akibatnya partikel bergerak didalam medan magnet dengan lintasan bentuk : LINGKARAN.
Gaya centripetalnya yang mengendalikan gerak ini adalah gaya Lorentz.
Fc = F Lorentz
clip_image121= B . q . v
R = clip_image123
R jari-jari lintasan partikel dalam magnet.
m massa partikel.
v kecepatan partikel.
q muatan partikel.
Arah gaya Lorentz dapat ditentukan dengan kadah tangan kanan bila tangan kanan di buka : Ibu jari menunjukkan ( v ), keempat jari menunjukkan ( B ) dan arah telapak tangan menunjukkan ( F )
clip_image124

0 komentar:

Posting Komentar